Cargando…

Pressure-imposed changes of benzoic acid crystals

Structural and energetic properties of benzoic acid crystals at pressure elevated from ambient condition up to 2.21 GPa were characterized. The directly observed variations of cell parameters and consequently cell volume are associated with many other changes including energetic, geometric, and elec...

Descripción completa

Detalles Bibliográficos
Autor principal: Cysewski, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357648/
https://www.ncbi.nlm.nih.gov/pubmed/25764324
http://dx.doi.org/10.1007/s00894-015-2635-z
Descripción
Sumario:Structural and energetic properties of benzoic acid crystals at pressure elevated from ambient condition up to 2.21 GPa were characterized. The directly observed variations of cell parameters and consequently cell volume are associated with many other changes including energetic, geometric, and electronic characteristics. First of all the non-monotonous change of lattice energy are noticed with the rise of pressure since the increase of stabilization up to 1GPa is followed by systematic decrease of lattice energies after extending the hydrostatic compression. There is also an observed increase of C (2)(2)(8) synthon stabilization interaction with increase of pressure. The lattice response rather than interaction within synthons are source of observed pressure-related trend of lattice energy changes. The energy decomposition analysis revealed that the total steric interactions determine the overall trend of lattice energy change with the rise of pressure. Besides geometric aromaticity index was used as a measure of geometric changes. Serious discrepancies were noticed between HOMA values computed with the use of experimental and optimized geometries of the ring. Even inclusion of uncertainties of experimental geometries related to limited precision of X-ray diffraction measurements does not cancel mentioned discrepancies. Although HOMA exhibit similar trends at modest pressures the diversity became surprisingly high at more extreme conditions. This might suggest limitations of periodic DFT computations at elevated pressures and the experimentally observed breaking of molecules at very high pressures will probably not be accounted properly in this approach. Also limitation of direct use of experimental geometries were highlighted. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00894-015-2635-z) contains supplementary material, which is available to authorized users.