Cargando…
Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks
Mutual information (MI), a quantity describing the nonlinear dependence between two random variables, has been widely used to construct gene regulatory networks (GRNs). Despite its good performance, MI cannot separate the direct regulations from indirect ones among genes. Although the conditional mu...
Autores principales: | Zhang, Xiujun, Zhao, Juan, Hao, Jin-Kao, Zhao, Xing-Ming, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357691/ https://www.ncbi.nlm.nih.gov/pubmed/25539927 http://dx.doi.org/10.1093/nar/gku1315 |
Ejemplares similares
-
Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information
por: Wang, Jianxin, et al.
Publicado: (2013) -
Cas9-chromatin binding information enables more accurate CRISPR off-target prediction
por: Singh, Ritambhara, et al.
Publicado: (2015) -
Sharing DNA-binding information across structurally similar proteins enables accurate specificity determination
por: Wetzel, Joshua L, et al.
Publicado: (2020) -
Genome-wide epistasis and co-selection study using mutual information
por: Pensar, Johan, et al.
Publicado: (2019) -
BCseq: accurate single cell RNA-seq quantification with bias correction
por: Chen, Liang, et al.
Publicado: (2018)