Cargando…
On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents
The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has...
Autores principales: | Esquivel-Gómez, J., Arjona-Villicaña, P. D., Stevens-Navarro, E., Pineda-Rico, U., Balderas-Navarro, R. E., Acosta-Elias, J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358025/ https://www.ncbi.nlm.nih.gov/pubmed/25765763 http://dx.doi.org/10.1038/srep09067 |
Ejemplares similares
-
A growth model for directed complex networks with power-law shape in the out-degree distribution
por: Esquivel-Gómez, J., et al.
Publicado: (2015) -
Fitting power-laws in empirical data with estimators that work for all exponents
por: Hanel, Rudolf, et al.
Publicado: (2017) -
Correction: Fitting power-laws in empirical data with estimators that work for all exponents
por: Hanel, Rudolf, et al.
Publicado: (2018) -
The Evolution of the Exponent of Zipf's Law in Language Ontogeny
por: Baixeries, Jaume, et al.
Publicado: (2013) -
Micro-mechanical response and power-law exponents from the longitudinal fluctuations of F-actin solutions
por: Domínguez-García, Pablo, et al.
Publicado: (2023)