Cargando…
AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid
BACKGROUND: n-3 long chain polyunsaturated fatty acid (n-3 LC PUFA) increases β-oxidation and limits lipid accumulation in adipocytes. The current study was conducted to determine whether their precursor alpha-linolenic acid (ALA) could also exert the above effects and how AMP-activated protein kina...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358912/ https://www.ncbi.nlm.nih.gov/pubmed/25774202 http://dx.doi.org/10.1186/s12986-015-0006-5 |
_version_ | 1782361307800928256 |
---|---|
author | Zhou, Xihong Wu, Weiche Chen, Jingqing Wang, Xinxia Wang, Yizhen |
author_facet | Zhou, Xihong Wu, Weiche Chen, Jingqing Wang, Xinxia Wang, Yizhen |
author_sort | Zhou, Xihong |
collection | PubMed |
description | BACKGROUND: n-3 long chain polyunsaturated fatty acid (n-3 LC PUFA) increases β-oxidation and limits lipid accumulation in adipocytes. The current study was conducted to determine whether their precursor alpha-linolenic acid (ALA) could also exert the above effects and how AMP-activated protein kinase (AMPK) was involved. METHODS: AMPKα1(−/−), AMPKα2(−/−) mice and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD with ALA. Body weight was recorded weekly and serum was collected. Adipocytes size and expression of key players involved in mitochondrial biogenesis and lipid oxidation were also measured. RESULTS: Our results showed an elevated serum adiponectin level and a decreased leptin and insulin level in WT mice fed HFD with ALA when compared with WT mice fed HFD. In addition, dietary ALA decreased epididymal adiposity and adipocytes size in WT mice. At protein level, mitochondrial genes (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [PGC1α] and nuclear respiratory factor-1 [nrf1]) and β-oxidation related genes (carnitine palmitoyltransferase 1A [CPT1a] and peroxisome proliferator-activated receptor alpha [PPARα]) were upregulated by dietary ALA in epididymal fat of WT mice. Consistently, dietary ALA also increased mitochondrial genomic DNA copy numbers. Moreover, lipogenesis was repressed by dietary ALA, indicated by that expression of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and stearoyl-CoA desaturase 1 (SCD1) were decreased. However, these aforementioned effects were abolished in the AMPKα1 and AMPKα2 knockout mice. CONCLUSIONS: Our results suggest that ALA could improve adipose tissue function and its anti-adipogenic effects are dependent on AMPK. |
format | Online Article Text |
id | pubmed-4358912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43589122015-03-14 AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid Zhou, Xihong Wu, Weiche Chen, Jingqing Wang, Xinxia Wang, Yizhen Nutr Metab (Lond) Research BACKGROUND: n-3 long chain polyunsaturated fatty acid (n-3 LC PUFA) increases β-oxidation and limits lipid accumulation in adipocytes. The current study was conducted to determine whether their precursor alpha-linolenic acid (ALA) could also exert the above effects and how AMP-activated protein kinase (AMPK) was involved. METHODS: AMPKα1(−/−), AMPKα2(−/−) mice and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD with ALA. Body weight was recorded weekly and serum was collected. Adipocytes size and expression of key players involved in mitochondrial biogenesis and lipid oxidation were also measured. RESULTS: Our results showed an elevated serum adiponectin level and a decreased leptin and insulin level in WT mice fed HFD with ALA when compared with WT mice fed HFD. In addition, dietary ALA decreased epididymal adiposity and adipocytes size in WT mice. At protein level, mitochondrial genes (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [PGC1α] and nuclear respiratory factor-1 [nrf1]) and β-oxidation related genes (carnitine palmitoyltransferase 1A [CPT1a] and peroxisome proliferator-activated receptor alpha [PPARα]) were upregulated by dietary ALA in epididymal fat of WT mice. Consistently, dietary ALA also increased mitochondrial genomic DNA copy numbers. Moreover, lipogenesis was repressed by dietary ALA, indicated by that expression of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC) and stearoyl-CoA desaturase 1 (SCD1) were decreased. However, these aforementioned effects were abolished in the AMPKα1 and AMPKα2 knockout mice. CONCLUSIONS: Our results suggest that ALA could improve adipose tissue function and its anti-adipogenic effects are dependent on AMPK. BioMed Central 2015-03-08 /pmc/articles/PMC4358912/ /pubmed/25774202 http://dx.doi.org/10.1186/s12986-015-0006-5 Text en © Zhou et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zhou, Xihong Wu, Weiche Chen, Jingqing Wang, Xinxia Wang, Yizhen AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
title | AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
title_full | AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
title_fullStr | AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
title_full_unstemmed | AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
title_short | AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
title_sort | amp-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358912/ https://www.ncbi.nlm.nih.gov/pubmed/25774202 http://dx.doi.org/10.1186/s12986-015-0006-5 |
work_keys_str_mv | AT zhouxihong ampactivatedproteinkinaseisrequiredfortheantiadipogeniceffectsofalphalinolenicacid AT wuweiche ampactivatedproteinkinaseisrequiredfortheantiadipogeniceffectsofalphalinolenicacid AT chenjingqing ampactivatedproteinkinaseisrequiredfortheantiadipogeniceffectsofalphalinolenicacid AT wangxinxia ampactivatedproteinkinaseisrequiredfortheantiadipogeniceffectsofalphalinolenicacid AT wangyizhen ampactivatedproteinkinaseisrequiredfortheantiadipogeniceffectsofalphalinolenicacid |