Cargando…
The Extent and Consequences of P-Hacking in Science
A focus on novel, confirmatory, and statistically significant results leads to substantial bias in the scientific literature. One type of bias, known as “p-hacking,” occurs when researchers collect or select data or statistical analyses until nonsignificant results become significant. Here, we use t...
Autores principales: | Head, Megan L., Holman, Luke, Lanfear, Rob, Kahn, Andrew T., Jennions, Michael D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359000/ https://www.ncbi.nlm.nih.gov/pubmed/25768323 http://dx.doi.org/10.1371/journal.pbio.1002106 |
Ejemplares similares
-
Evidence of Experimental Bias in the Life Sciences: Why We Need Blind Data Recording
por: Holman, Luke, et al.
Publicado: (2015) -
Evidence that nonsignificant results are sometimes preferred: Reverse P-hacking or selective reporting?
por: Chuard, Pierre J. C., et al.
Publicado: (2019) -
Commentary: The Extent and Consequences of P-Hacking in Science
por: Botella, Juan, et al.
Publicado: (2020) -
Hacking hematopoiesis – emerging tools for examining variant effects
por: Gundry, Michael, et al.
Publicado: (2023) -
Fitness consequences of artificial selection on relative male genital size
por: Booksmythe, Isobel, et al.
Publicado: (2016)