Cargando…
Microglial K(+) Channel Expression in Young Adult and Aged Mice
The K(+) channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K(+) channels and...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359010/ https://www.ncbi.nlm.nih.gov/pubmed/25472417 http://dx.doi.org/10.1002/glia.22776 |
Sumario: | The K(+) channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K(+) channels and their regulation in vivo is limited. Here, we have investigated K(+) currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K(+) currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K(+) currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K(+) current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K(+) currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca(2+)-activated K(+) channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K(+) channel pattern nor K(+) channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca(2+)-activated, K(+) channels. |
---|