Cargando…

Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)

The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juvenil...

Descripción completa

Detalles Bibliográficos
Autores principales: Tropea, Carolina, Stumpf, Liane, López Greco, Laura Susana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359132/
https://www.ncbi.nlm.nih.gov/pubmed/25768918
http://dx.doi.org/10.1371/journal.pone.0119468
_version_ 1782361345669201920
author Tropea, Carolina
Stumpf, Liane
López Greco, Laura Susana
author_facet Tropea, Carolina
Stumpf, Liane
López Greco, Laura Susana
author_sort Tropea, Carolina
collection PubMed
description The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32°C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24°C were lower than those at 28 and 32°C. On subsequent days, GI at 24°C exceeded that at 28 and 32°C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24°C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24°C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28°C. All the females that matured and mated at 32°C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28°C being the optimum temperature for its culture.
format Online
Article
Text
id pubmed-4359132
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43591322015-03-23 Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea) Tropea, Carolina Stumpf, Liane López Greco, Laura Susana PLoS One Research Article The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32°C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24°C were lower than those at 28 and 32°C. On subsequent days, GI at 24°C exceeded that at 28 and 32°C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24°C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24°C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28°C. All the females that matured and mated at 32°C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28°C being the optimum temperature for its culture. Public Library of Science 2015-03-13 /pmc/articles/PMC4359132/ /pubmed/25768918 http://dx.doi.org/10.1371/journal.pone.0119468 Text en © 2015 Tropea et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Tropea, Carolina
Stumpf, Liane
López Greco, Laura Susana
Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)
title Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)
title_full Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)
title_fullStr Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)
title_full_unstemmed Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)
title_short Effect of Temperature on Biochemical Composition, Growth and Reproduction of the Ornamental Red Cherry Shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea)
title_sort effect of temperature on biochemical composition, growth and reproduction of the ornamental red cherry shrimp neocaridina heteropoda heteropoda (decapoda, caridea)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359132/
https://www.ncbi.nlm.nih.gov/pubmed/25768918
http://dx.doi.org/10.1371/journal.pone.0119468
work_keys_str_mv AT tropeacarolina effectoftemperatureonbiochemicalcompositiongrowthandreproductionoftheornamentalredcherryshrimpneocaridinaheteropodaheteropodadecapodacaridea
AT stumpfliane effectoftemperatureonbiochemicalcompositiongrowthandreproductionoftheornamentalredcherryshrimpneocaridinaheteropodaheteropodadecapodacaridea
AT lopezgrecolaurasusana effectoftemperatureonbiochemicalcompositiongrowthandreproductionoftheornamentalredcherryshrimpneocaridinaheteropodaheteropodadecapodacaridea