Cargando…
Determination of the Optimal Training Principle and Input Variables in Artificial Neural Network Model for the Biweekly Chlorophyll-a Prediction: A Case Study of the Yuqiao Reservoir, China
Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and m...
Autores principales: | Liu, Yu, Xi, Du-Gang, Li, Zhao-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359150/ https://www.ncbi.nlm.nih.gov/pubmed/25768650 http://dx.doi.org/10.1371/journal.pone.0119082 |
Ejemplares similares
-
Spatio-Temporal Variation in Nutrient Profiles and Exchange Fluxes at the Sediment-Water Interface in Yuqiao Reservoir, China
por: Wen, Shuailong, et al.
Publicado: (2019) -
Environmental values and attitudes among farmers in China – a case study in the watershed of Yuqiao reservoir of Tianjin Municipality, China
por: Orderud, Geir Inge, et al.
Publicado: (2016) -
Salvage chemotherapy of biweekly irinotecan plus S-1 (biweekly IRIS) in previously treated patients with advanced gastric cancer
por: Chon, Hong Jae, et al.
Publicado: (2011) -
Modelling of Urban Air Pollutant Concentrations with Artificial Neural Networks Using Novel Input Variables
por: Goulier, Laura, et al.
Publicado: (2020) -
Optimal modularity and memory capacity of neural reservoirs
por: Rodriguez, Nathaniel, et al.
Publicado: (2019)