Cargando…
Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer
Long intergenic noncoding RNAs (lincRNAs) play important roles in regulating various biological processes in cancer, including proliferation and apoptosis. However, the roles of lincRNAs in bladder cancer remain elusive. In this study, we identified a novel lincRNA, which we termed AATBC. We found t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359217/ https://www.ncbi.nlm.nih.gov/pubmed/25473900 |
_version_ | 1782361360140599296 |
---|---|
author | Zhao, Fengjin Lin, Tianxin He, Wang Han, Jinli Zhu, Dingjun Hu, Kaishun Li, Weicong Zheng, Zaosong Huang, Jian Xie, Wenlian |
author_facet | Zhao, Fengjin Lin, Tianxin He, Wang Han, Jinli Zhu, Dingjun Hu, Kaishun Li, Weicong Zheng, Zaosong Huang, Jian Xie, Wenlian |
author_sort | Zhao, Fengjin |
collection | PubMed |
description | Long intergenic noncoding RNAs (lincRNAs) play important roles in regulating various biological processes in cancer, including proliferation and apoptosis. However, the roles of lincRNAs in bladder cancer remain elusive. In this study, we identified a novel lincRNA, which we termed AATBC. We found that AATBC was overexpressed in bladder cancer patient tissues and positively correlated with tumor grade and pT stage. We also found that inhibition of AATBC resulted in cell proliferation arrest through G1 cell cycle mediated by cyclin D1, CDK4, p18 and phosphorylated Rb. In addition, inhibition of AATBC induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-9 and caspase-3. The investigation for the signaling pathway revealed that the apoptosis following AATBC knockdown was mediated by activation of phosphorylated JNK and suppression of NRF2. Furthermore, JNK inhibitor SP600125 could attenuate the apoptotic effect achieved by AATBC knockdown, confirming the involvement of JNK signaling in the induced apoptosis. Moreover, mouse xenograft model revealed that knockdown of AATBC led to suppress tumorigenesis in vivo. Taken together, our study indicated that AATBC might play a critical role in pro-proliferation and anti-apoptosis in bladder cancer by regulating cell cycle, intrinsic apoptosis signaling, JNK signaling and NRF2. AATBC could be a potential therapeutic target and molecular biomarker for bladder cancer. |
format | Online Article Text |
id | pubmed-4359217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-43592172015-03-27 Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer Zhao, Fengjin Lin, Tianxin He, Wang Han, Jinli Zhu, Dingjun Hu, Kaishun Li, Weicong Zheng, Zaosong Huang, Jian Xie, Wenlian Oncotarget Research Paper Long intergenic noncoding RNAs (lincRNAs) play important roles in regulating various biological processes in cancer, including proliferation and apoptosis. However, the roles of lincRNAs in bladder cancer remain elusive. In this study, we identified a novel lincRNA, which we termed AATBC. We found that AATBC was overexpressed in bladder cancer patient tissues and positively correlated with tumor grade and pT stage. We also found that inhibition of AATBC resulted in cell proliferation arrest through G1 cell cycle mediated by cyclin D1, CDK4, p18 and phosphorylated Rb. In addition, inhibition of AATBC induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-9 and caspase-3. The investigation for the signaling pathway revealed that the apoptosis following AATBC knockdown was mediated by activation of phosphorylated JNK and suppression of NRF2. Furthermore, JNK inhibitor SP600125 could attenuate the apoptotic effect achieved by AATBC knockdown, confirming the involvement of JNK signaling in the induced apoptosis. Moreover, mouse xenograft model revealed that knockdown of AATBC led to suppress tumorigenesis in vivo. Taken together, our study indicated that AATBC might play a critical role in pro-proliferation and anti-apoptosis in bladder cancer by regulating cell cycle, intrinsic apoptosis signaling, JNK signaling and NRF2. AATBC could be a potential therapeutic target and molecular biomarker for bladder cancer. Impact Journals LLC 2014-11-25 /pmc/articles/PMC4359217/ /pubmed/25473900 Text en Copyright: © 2015 Zhao et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Zhao, Fengjin Lin, Tianxin He, Wang Han, Jinli Zhu, Dingjun Hu, Kaishun Li, Weicong Zheng, Zaosong Huang, Jian Xie, Wenlian Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer |
title | Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer |
title_full | Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer |
title_fullStr | Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer |
title_full_unstemmed | Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer |
title_short | Knockdown of a novel lincRNA AATBC suppresses proliferation and induces apoptosis in bladder cancer |
title_sort | knockdown of a novel lincrna aatbc suppresses proliferation and induces apoptosis in bladder cancer |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359217/ https://www.ncbi.nlm.nih.gov/pubmed/25473900 |
work_keys_str_mv | AT zhaofengjin knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT lintianxin knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT hewang knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT hanjinli knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT zhudingjun knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT hukaishun knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT liweicong knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT zhengzaosong knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT huangjian knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer AT xiewenlian knockdownofanovellincrnaaatbcsuppressesproliferationandinducesapoptosisinbladdercancer |