Cargando…

Down-regulation of miR-223 reverses epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells

Recent studies have demonstrated that acquisition of epithelial-to-mesenchymal transition (EMT) is associated with drug resistance in pancreatic cancer cells; however, the underlying mechanisms are not fully elucidated. Emerging evidence suggests that microRNAs play a crucial role in controlling EMT...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jia, Fang, Binbin, Zeng, Fanpeng, Ma, Cong, Pang, Haijie, Cheng, Long, Shi, Ying, Wang, Hui, Yin, Bin, Xia, Jun, Wang, Zhiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359328/
https://www.ncbi.nlm.nih.gov/pubmed/25638153
Descripción
Sumario:Recent studies have demonstrated that acquisition of epithelial-to-mesenchymal transition (EMT) is associated with drug resistance in pancreatic cancer cells; however, the underlying mechanisms are not fully elucidated. Emerging evidence suggests that microRNAs play a crucial role in controlling EMT. The aims of this study were to explore the potential role of miR-223 in governing EMT in gemcitabine-resistant (GR) pancreatic cancer cells. To achieve this goal, real-time reverse transcription-PCR and western blot analysis were used to validate whether GR cells acquired EMT in AsPC-1 and PANC-1 cells. Invasion, migration, and detachment assays were performed to further identify the EMT characteristics in GR cells. The miR-223 inhibitor was used to determine its role in GR-induced EMT. We found that GR cells acquired EMT features, which obtained elongated fibroblastoid morphology, decreased expression of epithelial marker E-cadherin, and up-regulation of mesenchymal markers. Furthermore, we observed that GR cells are associated with high expression of miR-223. Notably, inhibition of miR-223 led to the reversal of EMT phenotype. More importantly, miR-223 governs GR-induced EMT in part due to down-regulation of its target Fbw7 and subsequent upregulation of Notch-1 in pancreatic cancer. Our study implied that down-regulation of miR-223 could be a novel therapy for pancreatic cancer.