Cargando…

Effect of apoptosis in neural stem cells treated with sevoflurane

BACKGROUND: At present, sevoflurane inhalation anesthesia used on infants is well-known. But long-time exposure to inhalation anesthetic could cause neurologic disorder, especially nerve degeneration in infant and developing brain. The central nervous system degeneration of infants could affect the...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Jianlei, Shi, Pengcai, Mao, Wude, Zhao, Yuyi, Liu, Wenshuai, Wang, Yuelan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359390/
https://www.ncbi.nlm.nih.gov/pubmed/25774088
http://dx.doi.org/10.1186/s12871-015-0018-8
Descripción
Sumario:BACKGROUND: At present, sevoflurane inhalation anesthesia used on infants is well-known. But long-time exposure to inhalation anesthetic could cause neurologic disorder, especially nerve degeneration in infant and developing brain. The central nervous system degeneration of infants could affect the memory and cognitive function. γ-Aminobutyric acid (GABA) is a known inhibitory neurotransmitter in central nervous system. Inhalation anesthetic sevoflurane may activate GABA(A) receptor to inhibit central nervous system, leading to apoptosis of neural degeneration, cognitive dysfunction in the critical period of brain development. METHODS: Neural stem cells were derived from Wistar embryos, cultured in vitro. Third generation of neural stem cells were randomly divided into four groups according to cultured suspension: Sevoflurane group (Group S), GABA(A) receptor antagonists, Bicuculline group (Group B), Sevoflurane + GABA(A) receptor antagonists, Bicuculline group (Group S + B), dimethyl sulphoxide (DMSO) group (Group D). Group B and Group D did not receive sevoflurane preconditioning. Group S and Group S + B were pretreated with 1 minimum alveolar concentration (MAC) sevoflurane for 0 h, 3 h, 6 h, and 12 h. Group S + B and Group B were pretreated with bicuculline (10 uM). Group D was treated with DMSO (10 uL/mL). After treatments above, all groups were cultured for 48 h. Then we measured the cells viability by Cell Counting Kit (CCK-8) assay, cytotoxicity by Lactate Dehydrogenase (LDH) assay, apoptosis ratio with Annexin V/propidium iodide (PI) staining by flow cytometry, and the expression of GABA(A)R, anti-apoptotic protein Bcl-2, pro-apoptotic protein Bax and Caspase-3 by western blotting. RESULTS: After exposing to sevoflurane for 0 h, 3 h, 6 h, and 12 h with 1MAC, we found that cell viability obviously decreased and cytotoxicity increased in time-dependent way. And Annexin V/PI staining indicated increased apoptosis ratio by flow cytometry. The protein level of GABA(A) receptor, pro-apoptotic protein Bax and apoptosis protein Caspase-3 increased; while anti-apoptotic protein Bcl-2 decreased. And bicuculline could reverse all detrimental results caused by sevoflurane. CONCLUSION: Sevoflurane can inhibit the central nervous system by activating GABA(A), resulting in apoptosis of neural stem cells, thus leading to the NSCs degeneration.