Cargando…
Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data
BACKGROUND: Data generated from metabolomics experiments are different from other types of “-omics” data. For example, a common phenomenon in mass spectrometry (MS)-based metabolomics data is that the data matrix frequently contains missing values, which complicates some quantitative analyses. One w...
Autores principales: | Zhan, Xiang, Patterson, Andrew D, Ghosh, Debashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359587/ https://www.ncbi.nlm.nih.gov/pubmed/25887233 http://dx.doi.org/10.1186/s12859-015-0506-3 |
Ejemplares similares
-
Reproducibility of mass spectrometry based metabolomics data
por: Ghosh, Tusharkanti, et al.
Publicado: (2021) -
Compositional Data Analysis using Kernels in mass cytometry data
por: Rudra, Pratyaydipta, et al.
Publicado: (2022) -
TreeKernel: interpretable kernel machine tests for interactions between -omics and clinical predictors with applications to metabolomics and COPD phenotypes
por: Carpenter, Charlie M., et al.
Publicado: (2023) -
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
por: Wei, Runmin, et al.
Publicado: (2018) -
NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data
por: Xu, Jingjing, et al.
Publicado: (2021)