Cargando…

Exploiting the Symmetry of the Resonator Mode to Enhance PELDOR Sensitivity

Pulsed electron paramagnetic resonance (EPR) spectroscopy using microwaves at two frequencies can be employed to measure distances between pairs of paramagnets separated by up to 10 nm. The method, combined with site-directed mutagenesis, has become increasingly popular in structural biology for bot...

Descripción completa

Detalles Bibliográficos
Autores principales: Salvadori, Enrico, Fung, Mei Wai, Hoffmann, Markus, Anderson, Harry L., Kay, Christopher W. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359710/
https://www.ncbi.nlm.nih.gov/pubmed/25798030
http://dx.doi.org/10.1007/s00723-014-0621-8
Descripción
Sumario:Pulsed electron paramagnetic resonance (EPR) spectroscopy using microwaves at two frequencies can be employed to measure distances between pairs of paramagnets separated by up to 10 nm. The method, combined with site-directed mutagenesis, has become increasingly popular in structural biology for both its selectivity and capability of providing information not accessible through more standard methods such as nuclear magnetic resonance and X-ray crystallography. Despite these advantages, EPR distance measurements suffer from poor sensitivity. One contributing factor is technical: since 65 MHz typically separates the pump and detection frequencies, they cannot both be located at the center of the pseudo-Lorentzian microwave resonance of a single-mode resonator. To maximize the inversion efficiency, the pump pulse is usually placed at the center of the resonance, while the observer frequency is placed in the wing, with consequent reduction in sensitivity. Here, we consider an alternative configuration: by spacing pump and observer frequencies symmetrically with respect to the microwave resonance and by increasing the quality factor, valuable improvement in the signal-to-noise ratio can be obtained.