Cargando…

Evaluation of Epic® label-free technology to quantify functional recombinant hemagglutinin

BACKGROUND: Alternative methods are being sought to measure the potency of influenza vaccines. Label-free technologies that do not require the use of hemagglutinin (HA)-specific antisera are particularly attractive as the preparation of antiserum delays availability of potency reagents. The objectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Lianlian, Eichelberger, Maryna C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359790/
https://www.ncbi.nlm.nih.gov/pubmed/25774096
http://dx.doi.org/10.1186/s12575-015-0019-5
Descripción
Sumario:BACKGROUND: Alternative methods are being sought to measure the potency of influenza vaccines. Label-free technologies that do not require the use of hemagglutinin (HA)-specific antisera are particularly attractive as the preparation of antiserum delays availability of potency reagents. The objective of these experiments was to evaluate the use of a Corning Epic® label-free method to quantify functional influenza hemagglutinin in rHA preparations. The method was optimized to quantify recombinant HA (rHA) of B/Brisbane/60/2008 (B/BR/08). Fetuin was immobilized onto plates and the change in wavelength of refracted light measured using an Enspire (Perkin Elmer) instrument. RESULTS: The change in wavelength measured in response to addition of rHA of B/BR/08 was proportional to its concentration and was optimal in the presence of native rHA conformations. However, the assay was strain-dependent and did not correlate with HAU measured using turkey red blood cells. CONCLUSIONS: The Corning Epic® label-free method is suitable for quantifying the native forms of rHA for B/BR/08 and A/Brisbane/59/2007 (H1N1) and A/Hangxhou/3/2013 (H7N9). This method is a useful tool for research purposes but further investigation is needed to identify suitable glycoproteins to use as ligands that allow quantification of HAs from a broader range of virus strains. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12575-015-0019-5) contains supplementary material, which is available to authorized users.