Cargando…

A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions

Bidirectional molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. The molecular mechanisms underlying such communication are of keen interest and could provide new targets for intervention in motoneuron disease. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Zahavi, Eitan Erez, Ionescu, Ariel, Gluska, Shani, Gradus, Tal, Ben-Yaakov, Keren, Perlson, Eran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359927/
https://www.ncbi.nlm.nih.gov/pubmed/25632161
http://dx.doi.org/10.1242/jcs.167544
Descripción
Sumario:Bidirectional molecular communication between the motoneuron and the muscle is vital for neuromuscular junction (NMJ) formation and maintenance. The molecular mechanisms underlying such communication are of keen interest and could provide new targets for intervention in motoneuron disease. Here, we developed a microfluidic platform with motoneuron cell bodies on one side and muscle cells on the other, connected by motor axons extending through microgrooves to form functional NMJs. Using this system, we were able to differentiate between the proximal and distal effects of oxidative stress and glial-derived neurotrophic factor (GDNF), demonstrating a dying-back degeneration and retrograde transmission of pro-survival signaling, respectively. Furthermore, we show that GDNF acts differently on motoneuron axons versus soma, promoting axonal growth and innervation only when applied locally to axons. Finally, we track for the first time the retrograde transport of secreted GDNF from muscle to neuron. Thus, our data suggests spatially distinct effects of GDNF – facilitating growth and muscle innervation at axon terminals and survival pathways in the soma.