Cargando…

Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil

While social interactions play an important role for the evolution of bacterial siderophore production in vitro, the extent to which siderophore production is a social trait in natural populations is less clear. Here, we demonstrate that siderophores act as public goods in a natural physical environ...

Descripción completa

Detalles Bibliográficos
Autores principales: Luján, Adela M., Gómez, Pedro, Buckling, Angus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360104/
https://www.ncbi.nlm.nih.gov/pubmed/25694506
http://dx.doi.org/10.1098/rsbl.2014.0934
Descripción
Sumario:While social interactions play an important role for the evolution of bacterial siderophore production in vitro, the extent to which siderophore production is a social trait in natural populations is less clear. Here, we demonstrate that siderophores act as public goods in a natural physical environment of Pseudomonas fluorescens: soil-based compost. We show that monocultures of siderophore producers grow better than non-producers in soil, but non-producers can exploit others' siderophores, as shown by non-producers' ability to invade populations of producers when rare. Despite this rare advantage, non-producers were unable to outcompete producers, suggesting that producers and non-producers may stably coexist in soil. Such coexistence is predicted to arise from the spatial structure associated with soil, and this is supported by increased fitness of non-producers when grown in a shaken soil–water mix. Our results suggest that both producers and non-producers should be observed in soil, as has been observed in marine environments and in clinical populations.