Cargando…

Genetic variation in the effect of monoamines on female mating receptivity and oviposition in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae)

BACKGROUND: Female mate choice after mating is a strong force in sexual selection and could lead to coevolution of mating traits between the sexes. How females of different genotypes respond to substances in the male ejaculate should be mediated by females’ mate choices. Monoamines regulate animal p...

Descripción completa

Detalles Bibliográficos
Autor principal: Yamane, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360256/
https://www.ncbi.nlm.nih.gov/pubmed/25098756
http://dx.doi.org/10.1186/s12862-014-0172-5
Descripción
Sumario:BACKGROUND: Female mate choice after mating is a strong force in sexual selection and could lead to coevolution of mating traits between the sexes. How females of different genotypes respond to substances in the male ejaculate should be mediated by females’ mate choices. Monoamines regulate animal physiology and behavior, including the post-mating behavior of females of the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). This study examined differences in females’ response to four monoamines (dopamine, octopamine, tyramine, serotonin) between strains from different populations of C. chinensis. RESULTS: Injection with either octopamine or tyramine, two kinds of monoamines significantly reduced female receptivity in two strains with low remating frequencies. None of the four monoamines reduced female receptivity in one strain with high remating frequencies. However, all monoamines reduced it in another strain with high remating frequencies. Oviposition was activated by tyramine on days 1–5 or by serotonin on days 4 and 5 in the two strains with low remating frequencies, but only on day 1 or day 4 in the strains with high remating frequencies. CONCLUSION: These differences in female response to monoamines, especially tyramine and serotonin, correspond with results of previous studies. They indicate differences in female response to male substances that reduce receptivity and activate oviposition. These findings suggest relationships between the differences in female response to male substances among populations and mutations in the pathways of monoamine biosynthesis or transmission, which in turn determine female mate choice in response to male substances.