Cargando…
Improving Drug Sensitivity Prediction Using Different Types of Data
The algorithms and models used to address the two subchallenges that are part of the NCI-DREAM (Dialogue for Reverse Engineering Assessments and Methods) Drug Sensitivity Prediction Challenge (2012) are presented. In subchallenge 1, a bidirectional search algorithm is introduced and optimized using...
Autores principales: | Hejase, HA, Chan, C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360670/ https://www.ncbi.nlm.nih.gov/pubmed/26225231 http://dx.doi.org/10.1002/psp4.2 |
Ejemplares similares
-
A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation
por: Hejase, Hussein A., et al.
Publicado: (2016) -
Multitask learning improves prediction of cancer drug sensitivity
por: Yuan, Han, et al.
Publicado: (2016) -
Predicting anticancer drug sensitivity on distributed data sources using federated deep learning
por: Xu, Xiaolu, et al.
Publicado: (2023) -
Erratum to: ‘Mapping the genomic architecture of adaptive traits with interspecific introgressive origin: a coalescent-based approach’
por: Hejase, Hussein A., et al.
Publicado: (2016) -
Mapping the genomic architecture of adaptive traits with interspecific introgressive origin: a coalescent-based approach
por: Hejase, Hussein A., et al.
Publicado: (2016)