Cargando…
Modeling Discrete Survival Time Using Genomic Feature Data
Researchers have recently shown that penalized models perform well when applied to high-throughput genomic data. Previous researchers introduced the generalized monotone incremental forward stagewise (GMIFS) method for fitting overparameterized logistic regression models. The GMIFS method was subseq...
Autores principales: | Ferber, Kyle, Archer, Kellie J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360712/ https://www.ncbi.nlm.nih.gov/pubmed/25861216 http://dx.doi.org/10.4137/CIN.S17275 |
Ejemplares similares
-
ordinalgmifs: An R Package for Ordinal Regression in High-dimensional Data Settings
por: Archer, Kellie J, et al.
Publicado: (2014) -
Generalized Monotone Incremental Forward Stagewise Method for Modeling Count Data: Application Predicting Micronuclei Frequency
por: Makowski, Mateusz, et al.
Publicado: (2015) -
Feature selection and survival modeling in The Cancer Genome Atlas
por: Kim, Hyunsoo, et al.
Publicado: (2013) -
Can discrete event simulation be of use in modelling major depression?
por: Le Lay, Agathe, et al.
Publicado: (2006) -
Empirical validation of the S-Score algorithm in the analysis of gene expression data
por: Kennedy, Richard E, et al.
Publicado: (2006)