Cargando…
Bridging a translational gap: using machine learning to improve the prediction of PTSD
BACKGROUND: Predicting Posttraumatic Stress Disorder (PTSD) is a pre-requisite for targeted prevention. Current research has identified group-level risk-indicators, many of which (e.g., head trauma, receiving opiates) concern but a subset of survivors. Identifying interchangeable sets of risk indica...
Autores principales: | Karstoft, Karen-Inge, Galatzer-Levy, Isaac R, Statnikov, Alexander, Li, Zhiguo, Shalev, Arieh Y |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4360940/ https://www.ncbi.nlm.nih.gov/pubmed/25886446 http://dx.doi.org/10.1186/s12888-015-0399-8 |
Ejemplares similares
-
Utilization of machine learning for prediction of post-traumatic stress: a re-examination of cortisol in the prediction and pathways to non-remitting PTSD
por: Galatzer-Levy, I R, et al.
Publicado: (2017) -
Early PTSD Symptom Trajectories: Persistence, Recovery, and Response to Treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS)
por: Galatzer-Levy, Isaac R., et al.
Publicado: (2013) -
Correction: Early PTSD Symptom Trajectories: Persistence, Recovery, and Response to Treatment: Results from the Jerusalem Trauma Outreach and Prevention Study (J-TOPS)
por: Galatzer-Levy, Isaac R., et al.
Publicado: (2013) -
Utilization of machine learning to test the impact of cognitive processing and emotion recognition on the development of PTSD following trauma exposure
por: Augsburger, Mareike, et al.
Publicado: (2020) -
PTSD and complex PTSD in treatment-seeking Danish soldiers: a replication of Folke et al. (2019) using the International Trauma Questionnaire
por: Folke, Sofie, et al.
Publicado: (2021)