Cargando…
Functions of Multivector Variables
As is well known, the common elementary functions defined over the real numbers can be generalized to act not only over the complex number field but also over the skew (non-commuting) field of the quaternions. In this paper, we detail a number of elementary functions extended to act over the skew fi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361175/ https://www.ncbi.nlm.nih.gov/pubmed/25774689 http://dx.doi.org/10.1371/journal.pone.0116943 |
Sumario: | As is well known, the common elementary functions defined over the real numbers can be generalized to act not only over the complex number field but also over the skew (non-commuting) field of the quaternions. In this paper, we detail a number of elementary functions extended to act over the skew field of Clifford multivectors, in both two and three dimensions. Complex numbers, quaternions and Cartesian vectors can be described by the various components within a Clifford multivector and from our results we are able to demonstrate new inter-relationships between these algebraic systems. One key relationship that we discover is that a complex number raised to a vector power produces a quaternion thus combining these systems within a single equation. We also find a single formula that produces the square root, amplitude and inverse of a multivector over one, two and three dimensions. Finally, comparing the functions over different dimension we observe that [Image: see text] provides a particularly versatile algebraic framework. |
---|