Cargando…

Multiple Proteases to Localize Oxidation Sites

Proteins present in cellular environments with high levels of reactive oxygen and nitrogen species and/or low levels of antioxidants are highly susceptible to oxidative post-translational modification (PTM). Irreversible oxidative PTMs can generate a complex distribution of modified protein molecule...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Liqing, Robinson, Renã A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361631/
https://www.ncbi.nlm.nih.gov/pubmed/25775238
http://dx.doi.org/10.1371/journal.pone.0116606
Descripción
Sumario:Proteins present in cellular environments with high levels of reactive oxygen and nitrogen species and/or low levels of antioxidants are highly susceptible to oxidative post-translational modification (PTM). Irreversible oxidative PTMs can generate a complex distribution of modified protein molecules, recently termed as proteoforms. Using ubiquitin as a model system, we mapped oxidative modification sites using trypsin, Lys-C, and Glu-C peptides. Several M+16 Da proteoforms were detected as well as proteoforms that include other previously unidentified oxidative modifications. This work highlights the use of multiple protease digestions to give insights to the complexity of oxidative modifications possible in bottom-up analyses.