Cargando…

Dark-induced senescence of barley leaves involves activation of plastid transglutaminases

Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Sobieszczuk-Nowicka, E., Zmienko, A., Samelak-Czajka, A., Łuczak, M., Pietrowska-Borek, M., Iorio, R., Del Duca, S., Figlerowicz, M., Legocka, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361728/
https://www.ncbi.nlm.nih.gov/pubmed/25583605
http://dx.doi.org/10.1007/s00726-014-1912-y
_version_ 1782361695325257728
author Sobieszczuk-Nowicka, E.
Zmienko, A.
Samelak-Czajka, A.
Łuczak, M.
Pietrowska-Borek, M.
Iorio, R.
Del Duca, S.
Figlerowicz, M.
Legocka, J.
author_facet Sobieszczuk-Nowicka, E.
Zmienko, A.
Samelak-Czajka, A.
Łuczak, M.
Pietrowska-Borek, M.
Iorio, R.
Del Duca, S.
Figlerowicz, M.
Legocka, J.
author_sort Sobieszczuk-Nowicka, E.
collection PubMed
description Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. ‘Nagrad’ leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00726-014-1912-y) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4361728
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-43617282015-03-20 Dark-induced senescence of barley leaves involves activation of plastid transglutaminases Sobieszczuk-Nowicka, E. Zmienko, A. Samelak-Czajka, A. Łuczak, M. Pietrowska-Borek, M. Iorio, R. Del Duca, S. Figlerowicz, M. Legocka, J. Amino Acids Original Article Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. ‘Nagrad’ leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00726-014-1912-y) contains supplementary material, which is available to authorized users. Springer Vienna 2015-01-13 2015 /pmc/articles/PMC4361728/ /pubmed/25583605 http://dx.doi.org/10.1007/s00726-014-1912-y Text en © The Author(s) 2015 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Original Article
Sobieszczuk-Nowicka, E.
Zmienko, A.
Samelak-Czajka, A.
Łuczak, M.
Pietrowska-Borek, M.
Iorio, R.
Del Duca, S.
Figlerowicz, M.
Legocka, J.
Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
title Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
title_full Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
title_fullStr Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
title_full_unstemmed Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
title_short Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
title_sort dark-induced senescence of barley leaves involves activation of plastid transglutaminases
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361728/
https://www.ncbi.nlm.nih.gov/pubmed/25583605
http://dx.doi.org/10.1007/s00726-014-1912-y
work_keys_str_mv AT sobieszczuknowickae darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT zmienkoa darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT samelakczajkaa darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT łuczakm darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT pietrowskaborekm darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT iorior darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT delducas darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT figlerowiczm darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases
AT legockaj darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases