Cargando…
Dark-induced senescence of barley leaves involves activation of plastid transglutaminases
Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell ap...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361728/ https://www.ncbi.nlm.nih.gov/pubmed/25583605 http://dx.doi.org/10.1007/s00726-014-1912-y |
_version_ | 1782361695325257728 |
---|---|
author | Sobieszczuk-Nowicka, E. Zmienko, A. Samelak-Czajka, A. Łuczak, M. Pietrowska-Borek, M. Iorio, R. Del Duca, S. Figlerowicz, M. Legocka, J. |
author_facet | Sobieszczuk-Nowicka, E. Zmienko, A. Samelak-Czajka, A. Łuczak, M. Pietrowska-Borek, M. Iorio, R. Del Duca, S. Figlerowicz, M. Legocka, J. |
author_sort | Sobieszczuk-Nowicka, E. |
collection | PubMed |
description | Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. ‘Nagrad’ leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00726-014-1912-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4361728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-43617282015-03-20 Dark-induced senescence of barley leaves involves activation of plastid transglutaminases Sobieszczuk-Nowicka, E. Zmienko, A. Samelak-Czajka, A. Łuczak, M. Pietrowska-Borek, M. Iorio, R. Del Duca, S. Figlerowicz, M. Legocka, J. Amino Acids Original Article Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. ‘Nagrad’ leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00726-014-1912-y) contains supplementary material, which is available to authorized users. Springer Vienna 2015-01-13 2015 /pmc/articles/PMC4361728/ /pubmed/25583605 http://dx.doi.org/10.1007/s00726-014-1912-y Text en © The Author(s) 2015 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Article Sobieszczuk-Nowicka, E. Zmienko, A. Samelak-Czajka, A. Łuczak, M. Pietrowska-Borek, M. Iorio, R. Del Duca, S. Figlerowicz, M. Legocka, J. Dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
title | Dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
title_full | Dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
title_fullStr | Dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
title_full_unstemmed | Dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
title_short | Dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
title_sort | dark-induced senescence of barley leaves involves activation of plastid transglutaminases |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361728/ https://www.ncbi.nlm.nih.gov/pubmed/25583605 http://dx.doi.org/10.1007/s00726-014-1912-y |
work_keys_str_mv | AT sobieszczuknowickae darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT zmienkoa darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT samelakczajkaa darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT łuczakm darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT pietrowskaborekm darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT iorior darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT delducas darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT figlerowiczm darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases AT legockaj darkinducedsenescenceofbarleyleavesinvolvesactivationofplastidtransglutaminases |