Cargando…

Lipoprotein(a)—clinical aspects and future challenges

Lipoprotein(a) (Lp(a)) was first described by K. Berg and is known for more than 50 years. It is an interesting particle and combines the atherogenic properties of low-density lipoprotein (LDL)-cholesterol as well as the thrombogenic properties of plasminogen inactivation. However, due to technical...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurt, Bilgen, Soufi, Muhidien, Sattler, Alexander, Schaefer, Juergen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361767/
https://www.ncbi.nlm.nih.gov/pubmed/25732622
http://dx.doi.org/10.1007/s11789-015-0075-z
Descripción
Sumario:Lipoprotein(a) (Lp(a)) was first described by K. Berg and is known for more than 50 years. It is an interesting particle and combines the atherogenic properties of low-density lipoprotein (LDL)-cholesterol as well as the thrombogenic properties of plasminogen inactivation. However, due to technical problems and publication of negative trials the potential role of Lp(a) in atherosclerosis was severely underestimated. In recent years our understanding of the function and importance of Lp(a) improved. Interventional trials with niacin failed to demonstrate any benefit of lowering Lp(a); however, several studies confirmed the residual cardiovascular disease (CVD) risk of elevated Lp(a). LDL/Lp(a) apheresis is able to lower Lp(a) and some new drugs under development should help us to lower Lp(a) in the near future. It will be important to follow this with hard endpoint trials. Until then most clinicians recommend the use of an aggressive LDL-lowering approach in patients with high Lp(a). Since most of these patients with high Lp(a) might have manifested atherosclerosis anyway, we would also consider the use of acetylsalicylic acid.