Cargando…

Identification of genetic variations associated with epsilon-poly-lysine biosynthesis in Streptomyces albulus ZPM by genome sequencing

The biosynthesis of the antibiotic epsilon-poly-lysine (ε-PL) in Streptomyces albulus is performed by polylysine synthase (pls); however, the regulatory mechanism of this process is still unknown. Here, we first obtained the complete genome sequence of S. albulus ZPM, which consists of 9,784,577 bp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lin, Gao, Chunhui, Tang, Nan, Hu, Songnian, Wu, Qingfa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361855/
https://www.ncbi.nlm.nih.gov/pubmed/25776564
http://dx.doi.org/10.1038/srep09201
Descripción
Sumario:The biosynthesis of the antibiotic epsilon-poly-lysine (ε-PL) in Streptomyces albulus is performed by polylysine synthase (pls); however, the regulatory mechanism of this process is still unknown. Here, we first obtained the complete genome sequence of S. albulus ZPM, which consists of 9,784,577 bp and has a GC content of 72.2%. The genome houses 44 gene clusters for secondary metabolite biosynthesis, in which 20 gene clusters are involved in the biosynthesis of polyketides and nonribosomally synthesized peptides. High-throughput sequencing was further performed, and genetic variants were identified from pooled libraries consisting of the 30 highest-yield mutants or 30 lowest-yield mutants. More than 350 genetic variants associated with ε-PL yield have been identified. One hundred sixty-two affected proteins, from important metabolic enzymes to novel transcriptional regulators, were identified as being related to ε-PL synthesis. HrdD, one of the affected genes, is a sigma factor that shows the most sensitive response to pH change and contains a non-synonymous mutation (A132V) in mutant strains with lower ε-PL yields. Electrophoretic mobility shift assays showed that the pls gene is likely regulated by transcriptional activator HrdD. The data obtained in this study will facilitate future studies on ε-PL yield improvement and industrial bioprocess optimization.