Cargando…
Generation of hyper-entanglement in polarization/energy-time and discrete-frequency/energy-time in optical fibers
In this paper, a generation scheme for telecom band hyper-entanglement is proposed and demonstrated based on the vector spontaneous four wave mixing (SFWM) processes in optical fibers. Two kinds of two-photon states are generated, one is hyper-entangled in the degree of freedoms (DOFs) of energy-tim...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4361880/ https://www.ncbi.nlm.nih.gov/pubmed/25779686 http://dx.doi.org/10.1038/srep09195 |
Sumario: | In this paper, a generation scheme for telecom band hyper-entanglement is proposed and demonstrated based on the vector spontaneous four wave mixing (SFWM) processes in optical fibers. Two kinds of two-photon states are generated, one is hyper-entangled in the degree of freedoms (DOFs) of energy-time and polarization, the other is hyper-entangled in DOFs of energy-time and discrete-frequency. Experiments of Franson-type interference, two-photon interference under non-orthogonal polarization bases and spatial quantum beating are realized to demonstrate the entanglement in energy-time, polarization and frequency, respectively. This scheme provides a simple way to realize telecom band hyper-entanglement, which has potential for large geographic-scale applications of quantum communication and quantum information over optical fibers. |
---|