Cargando…
A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 ×...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362309/ https://www.ncbi.nlm.nih.gov/pubmed/25821686 http://dx.doi.org/10.3762/bjnano.6.46 |
_version_ | 1782361791905398784 |
---|---|
author | Meier, Tobias Förste, Alexander Tavassolizadeh, Ali Rott, Karsten Meyners, Dirk Gröger, Roland Reiss, Günter Quandt, Eckhard Schimmel, Thomas Hölscher, Hendrik |
author_facet | Meier, Tobias Förste, Alexander Tavassolizadeh, Ali Rott, Karsten Meyners, Dirk Gröger, Roland Reiss, Günter Quandt, Eckhard Schimmel, Thomas Hölscher, Hendrik |
author_sort | Meier, Tobias |
collection | PubMed |
description | We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers. |
format | Online Article Text |
id | pubmed-4362309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-43623092015-03-27 A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans Meier, Tobias Förste, Alexander Tavassolizadeh, Ali Rott, Karsten Meyners, Dirk Gröger, Roland Reiss, Günter Quandt, Eckhard Schimmel, Thomas Hölscher, Hendrik Beilstein J Nanotechnol Full Research Paper We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers. Beilstein-Institut 2015-02-13 /pmc/articles/PMC4362309/ /pubmed/25821686 http://dx.doi.org/10.3762/bjnano.6.46 Text en Copyright © 2015, Meier et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Meier, Tobias Förste, Alexander Tavassolizadeh, Ali Rott, Karsten Meyners, Dirk Gröger, Roland Reiss, Günter Quandt, Eckhard Schimmel, Thomas Hölscher, Hendrik A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
title | A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
title_full | A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
title_fullStr | A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
title_full_unstemmed | A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
title_short | A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
title_sort | scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362309/ https://www.ncbi.nlm.nih.gov/pubmed/25821686 http://dx.doi.org/10.3762/bjnano.6.46 |
work_keys_str_mv | AT meiertobias ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT forstealexander ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT tavassolizadehali ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT rottkarsten ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT meynersdirk ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT grogerroland ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT reissgunter ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT quandteckhard ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT schimmelthomas ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT holscherhendrik ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT meiertobias scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT forstealexander scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT tavassolizadehali scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT rottkarsten scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT meynersdirk scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT grogerroland scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT reissgunter scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT quandteckhard scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT schimmelthomas scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans AT holscherhendrik scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans |