Cargando…

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 ×...

Descripción completa

Detalles Bibliográficos
Autores principales: Meier, Tobias, Förste, Alexander, Tavassolizadeh, Ali, Rott, Karsten, Meyners, Dirk, Gröger, Roland, Reiss, Günter, Quandt, Eckhard, Schimmel, Thomas, Hölscher, Hendrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362309/
https://www.ncbi.nlm.nih.gov/pubmed/25821686
http://dx.doi.org/10.3762/bjnano.6.46
_version_ 1782361791905398784
author Meier, Tobias
Förste, Alexander
Tavassolizadeh, Ali
Rott, Karsten
Meyners, Dirk
Gröger, Roland
Reiss, Günter
Quandt, Eckhard
Schimmel, Thomas
Hölscher, Hendrik
author_facet Meier, Tobias
Förste, Alexander
Tavassolizadeh, Ali
Rott, Karsten
Meyners, Dirk
Gröger, Roland
Reiss, Günter
Quandt, Eckhard
Schimmel, Thomas
Hölscher, Hendrik
author_sort Meier, Tobias
collection PubMed
description We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.
format Online
Article
Text
id pubmed-4362309
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Beilstein-Institut
record_format MEDLINE/PubMed
spelling pubmed-43623092015-03-27 A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans Meier, Tobias Förste, Alexander Tavassolizadeh, Ali Rott, Karsten Meyners, Dirk Gröger, Roland Reiss, Günter Quandt, Eckhard Schimmel, Thomas Hölscher, Hendrik Beilstein J Nanotechnol Full Research Paper We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR) cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm(3) is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm(3). In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers. Beilstein-Institut 2015-02-13 /pmc/articles/PMC4362309/ /pubmed/25821686 http://dx.doi.org/10.3762/bjnano.6.46 Text en Copyright © 2015, Meier et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)
spellingShingle Full Research Paper
Meier, Tobias
Förste, Alexander
Tavassolizadeh, Ali
Rott, Karsten
Meyners, Dirk
Gröger, Roland
Reiss, Günter
Quandt, Eckhard
Schimmel, Thomas
Hölscher, Hendrik
A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
title A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
title_full A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
title_fullStr A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
title_full_unstemmed A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
title_short A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
title_sort scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans
topic Full Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362309/
https://www.ncbi.nlm.nih.gov/pubmed/25821686
http://dx.doi.org/10.3762/bjnano.6.46
work_keys_str_mv AT meiertobias ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT forstealexander ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT tavassolizadehali ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT rottkarsten ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT meynersdirk ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT grogerroland ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT reissgunter ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT quandteckhard ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT schimmelthomas ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT holscherhendrik ascanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT meiertobias scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT forstealexander scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT tavassolizadehali scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT rottkarsten scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT meynersdirk scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT grogerroland scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT reissgunter scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT quandteckhard scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT schimmelthomas scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans
AT holscherhendrik scanningprobemicroscopeformagnetoresistivecantileversutilizinganestedscannerdesignforlargeareascans