Cargando…
The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots
In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine–QDs, negatively charged dihydrolipoic acid–QDs and zwitterionic D-penicillamine–QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362492/ https://www.ncbi.nlm.nih.gov/pubmed/25821666 http://dx.doi.org/10.3762/bjnano.6.26 |
Sumario: | In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine–QDs, negatively charged dihydrolipoic acid–QDs and zwitterionic D-penicillamine–QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with pharmacological inhibitors suggested that the uptake of nanoparticles was largely due to receptor-independent pathways or spontaneous entry for carboxylated and zwitterionic QDs, while for amine-functionalized particles involvement of cholesterol-enriched membrane domains is conceivable. Cysteamine–QDs were found to be the least cytotoxic, while D-penicillamine–QDs reduced the mitochondrial activity of MDCKII by 20–25%. Although the cell vitality appeared unaffected (assessed from the changes in mitochondrial activity using a classical MTS assay after 24 h of exposure), the binding of QDs to the cellular interior and their movement across cytoskeletal filaments (captured and characterized by single-particle tracking), was shown to compromise the integrity of the cytoskeletal and plasma membrane dynamics, as evidenced by electric cell–substrate impedance sensing. |
---|