Cargando…
Prognostic Gene Signature Identification Using Causal Structure Learning: Applications in Kidney Cancer
Identification of molecular-based signatures is one of the critical steps toward finding therapeutic targets in cancer. In this paper, we propose methods to discover prognostic gene signatures under a causal structure learning framework across the whole genome. The causal structures are represented...
Autores principales: | Ha, Min Jin, Baladandayuthapani, Veerabhadran, Do, Kim-Anh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362630/ https://www.ncbi.nlm.nih.gov/pubmed/25861215 http://dx.doi.org/10.4137/CIN.S14873 |
Ejemplares similares
-
Bayesian Joint Selection of Genes and Pathways: Applications in Multiple Myeloma Genomics
por: Zhang, Lin, et al.
Publicado: (2014) -
iDINGO—integrative differential network analysis in genomics with Shiny application
por: Class, Caleb A, et al.
Publicado: (2018) -
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
por: Kundu, Suprateek, et al.
Publicado: (2018) -
Personalized Integrated Network Modeling of the Cancer Proteome Atlas
por: Ha, Min Jin, et al.
Publicado: (2018) -
Integrative network-based Bayesian analysis of diverse genomics data
por: Wang, Wenting, et al.
Publicado: (2013)