Cargando…

A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite

The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vector...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomes, Ana Rita, Bushell, Ellen, Schwach, Frank, Girling, Gareth, Anar, Burcu, Quail, Michael A., Herd, Colin, Pfander, Claudia, Modrzynska, Katarzyna, Rayner, Julian C., Billker, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362957/
https://www.ncbi.nlm.nih.gov/pubmed/25732065
http://dx.doi.org/10.1016/j.chom.2015.01.014
_version_ 1782361859702128640
author Gomes, Ana Rita
Bushell, Ellen
Schwach, Frank
Girling, Gareth
Anar, Burcu
Quail, Michael A.
Herd, Colin
Pfander, Claudia
Modrzynska, Katarzyna
Rayner, Julian C.
Billker, Oliver
author_facet Gomes, Ana Rita
Bushell, Ellen
Schwach, Frank
Girling, Gareth
Anar, Burcu
Quail, Michael A.
Herd, Colin
Pfander, Claudia
Modrzynska, Katarzyna
Rayner, Julian C.
Billker, Oliver
author_sort Gomes, Ana Rita
collection PubMed
description The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vectors into the haploid blood stages creates complex pools of barcoded mutants, whose competitive fitness can be measured during infection of a single mouse using barcode sequencing (barseq). To validate the utility of this resource, we rescreen the P. berghei kinome, using published kinome screens for comparison. We find that several protein kinases function redundantly in asexual blood stages and confirm the targetability of kinases cdpk1, gsk3, tkl3, and PBANKA_082960 by genotyping cloned mutants. Thus, parallel phenotyping of barcoded mutants unlocks the power of reverse genetic screening for a malaria parasite and will enable the systematic identification of genes essential for in vivo parasite growth and transmission.
format Online
Article
Text
id pubmed-4362957
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-43629572015-04-01 A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite Gomes, Ana Rita Bushell, Ellen Schwach, Frank Girling, Gareth Anar, Burcu Quail, Michael A. Herd, Colin Pfander, Claudia Modrzynska, Katarzyna Rayner, Julian C. Billker, Oliver Cell Host Microbe Resource The genome-wide identification of gene functions in malaria parasites is hampered by a lack of reverse genetic screening methods. We present a large-scale resource of barcoded vectors with long homology arms for effective modification of the Plasmodium berghei genome. Cotransfecting dozens of vectors into the haploid blood stages creates complex pools of barcoded mutants, whose competitive fitness can be measured during infection of a single mouse using barcode sequencing (barseq). To validate the utility of this resource, we rescreen the P. berghei kinome, using published kinome screens for comparison. We find that several protein kinases function redundantly in asexual blood stages and confirm the targetability of kinases cdpk1, gsk3, tkl3, and PBANKA_082960 by genotyping cloned mutants. Thus, parallel phenotyping of barcoded mutants unlocks the power of reverse genetic screening for a malaria parasite and will enable the systematic identification of genes essential for in vivo parasite growth and transmission. Cell Press 2015-03-11 /pmc/articles/PMC4362957/ /pubmed/25732065 http://dx.doi.org/10.1016/j.chom.2015.01.014 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Resource
Gomes, Ana Rita
Bushell, Ellen
Schwach, Frank
Girling, Gareth
Anar, Burcu
Quail, Michael A.
Herd, Colin
Pfander, Claudia
Modrzynska, Katarzyna
Rayner, Julian C.
Billker, Oliver
A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
title A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
title_full A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
title_fullStr A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
title_full_unstemmed A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
title_short A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite
title_sort genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362957/
https://www.ncbi.nlm.nih.gov/pubmed/25732065
http://dx.doi.org/10.1016/j.chom.2015.01.014
work_keys_str_mv AT gomesanarita agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT bushellellen agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT schwachfrank agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT girlinggareth agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT anarburcu agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT quailmichaela agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT herdcolin agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT pfanderclaudia agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT modrzynskakatarzyna agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT raynerjulianc agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT billkeroliver agenomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT gomesanarita genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT bushellellen genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT schwachfrank genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT girlinggareth genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT anarburcu genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT quailmichaela genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT herdcolin genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT pfanderclaudia genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT modrzynskakatarzyna genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT raynerjulianc genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite
AT billkeroliver genomescalevectorresourceenableshighthroughputreversegeneticscreeninginamalariaparasite