Cargando…
On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and com...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363466/ https://www.ncbi.nlm.nih.gov/pubmed/25843986 http://dx.doi.org/10.1016/j.amc.2015.01.025 |
Sumario: | Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and compactness of the product-type operator [Formula: see text] from the weighted Bergman–Orlicz space to the Bers type space, weighted Bloch space and weighted Zygmund space on [Formula: see text] are characterized. |
---|