Cargando…
On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and com...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363466/ https://www.ncbi.nlm.nih.gov/pubmed/25843986 http://dx.doi.org/10.1016/j.amc.2015.01.025 |
_version_ | 1782361911819501568 |
---|---|
author | Jiang, Zhi-jie |
author_facet | Jiang, Zhi-jie |
author_sort | Jiang, Zhi-jie |
collection | PubMed |
description | Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and compactness of the product-type operator [Formula: see text] from the weighted Bergman–Orlicz space to the Bers type space, weighted Bloch space and weighted Zygmund space on [Formula: see text] are characterized. |
format | Online Article Text |
id | pubmed-4363466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-43634662015-04-01 On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces Jiang, Zhi-jie Appl Math Comput Article Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and compactness of the product-type operator [Formula: see text] from the weighted Bergman–Orlicz space to the Bers type space, weighted Bloch space and weighted Zygmund space on [Formula: see text] are characterized. American Elsevier 2015-04-01 /pmc/articles/PMC4363466/ /pubmed/25843986 http://dx.doi.org/10.1016/j.amc.2015.01.025 Text en © 2015 The Author http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Jiang, Zhi-jie On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces |
title | On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces |
title_full | On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces |
title_fullStr | On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces |
title_full_unstemmed | On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces |
title_short | On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces |
title_sort | on a product-type operator from weighted bergman–orlicz space to some weighted type spaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363466/ https://www.ncbi.nlm.nih.gov/pubmed/25843986 http://dx.doi.org/10.1016/j.amc.2015.01.025 |
work_keys_str_mv | AT jiangzhijie onaproducttypeoperatorfromweightedbergmanorliczspacetosomeweightedtypespaces |