Cargando…

On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces

Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and com...

Descripción completa

Detalles Bibliográficos
Autor principal: Jiang, Zhi-jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363466/
https://www.ncbi.nlm.nih.gov/pubmed/25843986
http://dx.doi.org/10.1016/j.amc.2015.01.025
_version_ 1782361911819501568
author Jiang, Zhi-jie
author_facet Jiang, Zhi-jie
author_sort Jiang, Zhi-jie
collection PubMed
description Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and compactness of the product-type operator [Formula: see text] from the weighted Bergman–Orlicz space to the Bers type space, weighted Bloch space and weighted Zygmund space on [Formula: see text] are characterized.
format Online
Article
Text
id pubmed-4363466
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Elsevier
record_format MEDLINE/PubMed
spelling pubmed-43634662015-04-01 On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces Jiang, Zhi-jie Appl Math Comput Article Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and compactness of the product-type operator [Formula: see text] from the weighted Bergman–Orlicz space to the Bers type space, weighted Bloch space and weighted Zygmund space on [Formula: see text] are characterized. American Elsevier 2015-04-01 /pmc/articles/PMC4363466/ /pubmed/25843986 http://dx.doi.org/10.1016/j.amc.2015.01.025 Text en © 2015 The Author http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Jiang, Zhi-jie
On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
title On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
title_full On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
title_fullStr On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
title_full_unstemmed On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
title_short On a product-type operator from weighted Bergman–Orlicz space to some weighted type spaces
title_sort on a product-type operator from weighted bergman–orlicz space to some weighted type spaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363466/
https://www.ncbi.nlm.nih.gov/pubmed/25843986
http://dx.doi.org/10.1016/j.amc.2015.01.025
work_keys_str_mv AT jiangzhijie onaproducttypeoperatorfromweightedbergmanorliczspacetosomeweightedtypespaces