Cargando…
Is sexual reproduction of high-mountain plants endangered by heat?
Strong solar irradiation in combination with still air and dry soil can cause prostrate high-mountain plants to heat up considerably and ultimately suffer heat damage. Such heat damage has been repeatedly shown for vegetative structures, but not for reproductive structures, which we expected to be p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363489/ https://www.ncbi.nlm.nih.gov/pubmed/25698138 http://dx.doi.org/10.1007/s00442-015-3247-0 |
Sumario: | Strong solar irradiation in combination with still air and dry soil can cause prostrate high-mountain plants to heat up considerably and ultimately suffer heat damage. Such heat damage has been repeatedly shown for vegetative structures, but not for reproductive structures, which we expected to be particularly vulnerable to heat. Heat effects on cold-adapted plants may increase with rising global temperatures and the predicted increase in heat waves. We have tested the heat tolerance of reproductive versus vegetative shoots at different reproductive stages, comparing ten common plant species from different elevation belts in the European Alps. Plant samples were exposed to temperatures in 2-K steps of 30 min each between 42 and 56 °C. Heat damage was assessed by visual rating and vital staining. Reproductive shoots were on average 2.5 K less heat tolerant (LT(50), i.e. the mean temperature causing 50 % heat damage, 47.2 °C) than vegetative shoots (mean LT(50) 49.7 °C). Initial heat injuries (mean LT(10)) were observed at 43–45 °C in heat-susceptible species and at 45–47 °C in more heat-tolerant species, in at least one reproductive stage. Generally, heat tolerance was significantly higher during fruiting than during the bud stages and anthesis. Prostrate species with acaulescent buds and flowers tolerated heat better than those with caulescent buds and flowers. Petals were the most heat-susceptible plant structure and mature pollen the most heat tolerant. Based on these data, heat tolerance of reproductive structures appears to be adapted to the prevailing maximum temperatures which the plants experience during different reproductive stages in their environment. During hot spells, however, heat tolerance thresholds may be exceeded. More frequent heat waves would decrease the reproductive output and, consequently, the competitiveness of heat-susceptible species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-015-3247-0) contains supplementary material, which is available to authorized users. |
---|