Cargando…
Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718
Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363619/ https://www.ncbi.nlm.nih.gov/pubmed/25781161 http://dx.doi.org/10.1371/journal.pone.0119065 |
_version_ | 1782361944420777984 |
---|---|
author | Rang, Jie He, Hao Wang, Ting Ding, Xuezhi Zuo, Mingxing Quan, Meifang Sun, Yunjun Yu, Ziquan Hu, Shengbiao Xia, Liqiu |
author_facet | Rang, Jie He, Hao Wang, Ting Ding, Xuezhi Zuo, Mingxing Quan, Meifang Sun, Yunjun Yu, Ziquan Hu, Shengbiao Xia, Liqiu |
author_sort | Rang, Jie |
collection | PubMed |
description | Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for promoting the application of proteogenomics in the life sciences. |
format | Online Article Text |
id | pubmed-4363619 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43636192015-03-23 Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 Rang, Jie He, Hao Wang, Ting Ding, Xuezhi Zuo, Mingxing Quan, Meifang Sun, Yunjun Yu, Ziquan Hu, Shengbiao Xia, Liqiu PLoS One Research Article Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for promoting the application of proteogenomics in the life sciences. Public Library of Science 2015-03-17 /pmc/articles/PMC4363619/ /pubmed/25781161 http://dx.doi.org/10.1371/journal.pone.0119065 Text en © 2015 Rang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rang, Jie He, Hao Wang, Ting Ding, Xuezhi Zuo, Mingxing Quan, Meifang Sun, Yunjun Yu, Ziquan Hu, Shengbiao Xia, Liqiu Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 |
title | Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 |
title_full | Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 |
title_fullStr | Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 |
title_full_unstemmed | Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 |
title_short | Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718 |
title_sort | comparative analysis of genomics and proteomics in bacillus thuringiensis 4.0718 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363619/ https://www.ncbi.nlm.nih.gov/pubmed/25781161 http://dx.doi.org/10.1371/journal.pone.0119065 |
work_keys_str_mv | AT rangjie comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT hehao comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT wangting comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT dingxuezhi comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT zuomingxing comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT quanmeifang comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT sunyunjun comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT yuziquan comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT hushengbiao comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 AT xialiqiu comparativeanalysisofgenomicsandproteomicsinbacillusthuringiensis40718 |