Cargando…
Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory
Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation te...
Autores principales: | Ma, Xiaolei, Yu, Haiyang, Wang, Yunpeng, Wang, Yinhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363621/ https://www.ncbi.nlm.nih.gov/pubmed/25780910 http://dx.doi.org/10.1371/journal.pone.0119044 |
Ejemplares similares
-
Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
por: Ma, Xiaolei, et al.
Publicado: (2017) -
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
por: Yu, Haiyang, et al.
Publicado: (2017) -
Deep Autoencoder Neural Networks for Short-Term Traffic Congestion Prediction of Transportation Networks
por: Zhang, Sen, et al.
Publicado: (2019) -
Community detection in large scale congested urban road networks
por: Haghbayan, Seyed Arman, et al.
Publicado: (2021) -
A hybrid neural network for large-scale expressway network OD prediction based on toll data
por: Fu, Xin, et al.
Publicado: (2019)