Cargando…
Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits
Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363703/ https://www.ncbi.nlm.nih.gov/pubmed/25781180 http://dx.doi.org/10.1371/journal.pone.0120213 |
_version_ | 1782361961464332288 |
---|---|
author | Ott, Christine Dorsch, Eva Fraunholz, Martin Straub, Sebastian Kozjak-Pavlovic, Vera |
author_facet | Ott, Christine Dorsch, Eva Fraunholz, Martin Straub, Sebastian Kozjak-Pavlovic, Vera |
author_sort | Ott, Christine |
collection | PubMed |
description | Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components. |
format | Online Article Text |
id | pubmed-4363703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43637032015-03-23 Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits Ott, Christine Dorsch, Eva Fraunholz, Martin Straub, Sebastian Kozjak-Pavlovic, Vera PLoS One Research Article Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components. Public Library of Science 2015-03-17 /pmc/articles/PMC4363703/ /pubmed/25781180 http://dx.doi.org/10.1371/journal.pone.0120213 Text en © 2015 Ott et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ott, Christine Dorsch, Eva Fraunholz, Martin Straub, Sebastian Kozjak-Pavlovic, Vera Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits |
title | Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits |
title_full | Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits |
title_fullStr | Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits |
title_full_unstemmed | Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits |
title_short | Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits |
title_sort | detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363703/ https://www.ncbi.nlm.nih.gov/pubmed/25781180 http://dx.doi.org/10.1371/journal.pone.0120213 |
work_keys_str_mv | AT ottchristine detailedanalysisofthehumanmitochondrialcontactsitecomplexindicateahierarchyofsubunits AT dorscheva detailedanalysisofthehumanmitochondrialcontactsitecomplexindicateahierarchyofsubunits AT fraunholzmartin detailedanalysisofthehumanmitochondrialcontactsitecomplexindicateahierarchyofsubunits AT straubsebastian detailedanalysisofthehumanmitochondrialcontactsitecomplexindicateahierarchyofsubunits AT kozjakpavlovicvera detailedanalysisofthehumanmitochondrialcontactsitecomplexindicateahierarchyofsubunits |