Cargando…
Primitive Fitting Based on the Efficient multiBaySAC Algorithm
Although RANSAC is proven to be robust, the original RANSAC algorithm selects hypothesis sets at random, generating numerous iterations and high computational costs because many hypothesis sets are contaminated with outliers. This paper presents a conditional sampling method, multiBaySAC (Bayes SAmp...
Autores principales: | Kang, Zhizhong, Li, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363901/ https://www.ncbi.nlm.nih.gov/pubmed/25781620 http://dx.doi.org/10.1371/journal.pone.0117341 |
Ejemplares similares
-
Efficient realization of quantum primitives for Shor’s algorithm using PennyLane library
por: Antipov, A. V., et al.
Publicado: (2022) -
Efficient Implementation of MrBayes on Multi-GPU
por: Bao, Jie, et al.
Publicado: (2013) -
Results from BayesFITS
por: Roszkowski, Leszek
Publicado: (2011) -
LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage
por: Lee, Lydia K., et al.
Publicado: (2016) -
Towards Efficient Normalizers of Primitive Groups
por: Siccha, Sergio
Publicado: (2020)