Cargando…
Maslinic Acid Enhances Signals for the Recruitment of Macrophages and Their Differentiation to M1 State
The inflammatory process is involved in the genesis and evolution of different diseases like obesity, cardiovascular disease, and cancer. Macrophages play a central role in inflammation. In addition, they can regulate some stages of cancer development. Macrophages can polarize into M1 or M2 function...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364129/ https://www.ncbi.nlm.nih.gov/pubmed/25821495 http://dx.doi.org/10.1155/2015/654721 |
Sumario: | The inflammatory process is involved in the genesis and evolution of different diseases like obesity, cardiovascular disease, and cancer. Macrophages play a central role in inflammation. In addition, they can regulate some stages of cancer development. Macrophages can polarize into M1 or M2 functional phenotype depending on the cytokines present in the tissue microenvironment. On the other hand, triterpenes found in virgin olive oil are described to present different properties, such as antitumoral and anti-inflammatory activity. The present study was designed to elucidate if the four major triterpenes found in virgin olive oil (oleanolic acid, maslinic acid, uvaol, and erythrodiol) are able to enhance M1 macrophage response which represents an important defense mechanism against cancer. Our results indicated that maslinic acid modulated the inflammatory response by enhancing the production of IL-8, IL-1α, and IL-1β; it promoted M1 response through the synthesis of IFN-γ; and finally it did not modify significantly the levels of NFκβ or NO. Overall, our results showed that maslinic acid could prevent chronic inflammation, which represents a crucial step in the development of some cancers. |
---|