Cargando…
Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish
BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic an...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364459/ https://www.ncbi.nlm.nih.gov/pubmed/25761998 http://dx.doi.org/10.1186/s12915-015-0119-3 |
_version_ | 1782362068634042368 |
---|---|
author | Yoshizawa, Masato Robinson, Beatriz G Duboué, Erik R Masek, Pavel Jaggard, James B O’Quin, Kelly E Borowsky, Richard L Jeffery, William R Keene, Alex C |
author_facet | Yoshizawa, Masato Robinson, Beatriz G Duboué, Erik R Masek, Pavel Jaggard, James B O’Quin, Kelly E Borowsky, Richard L Jeffery, William R Keene, Alex C |
author_sort | Yoshizawa, Masato |
collection | PubMed |
description | BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS: We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F(2) hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS: Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0119-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4364459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43644592015-03-19 Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish Yoshizawa, Masato Robinson, Beatriz G Duboué, Erik R Masek, Pavel Jaggard, James B O’Quin, Kelly E Borowsky, Richard L Jeffery, William R Keene, Alex C BMC Biol Research Article BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS: We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F(2) hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS: Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12915-015-0119-3) contains supplementary material, which is available to authorized users. BioMed Central 2015-02-20 /pmc/articles/PMC4364459/ /pubmed/25761998 http://dx.doi.org/10.1186/s12915-015-0119-3 Text en © Yoshizawa et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Yoshizawa, Masato Robinson, Beatriz G Duboué, Erik R Masek, Pavel Jaggard, James B O’Quin, Kelly E Borowsky, Richard L Jeffery, William R Keene, Alex C Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish |
title | Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish |
title_full | Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish |
title_fullStr | Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish |
title_full_unstemmed | Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish |
title_short | Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish |
title_sort | distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the mexican cavefish |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364459/ https://www.ncbi.nlm.nih.gov/pubmed/25761998 http://dx.doi.org/10.1186/s12915-015-0119-3 |
work_keys_str_mv | AT yoshizawamasato distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT robinsonbeatrizg distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT duboueerikr distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT masekpavel distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT jaggardjamesb distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT oquinkellye distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT borowskyrichardl distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT jefferywilliamr distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish AT keenealexc distinctgeneticarchitectureunderliestheemergenceofsleeplossandpreyseekingbehaviorinthemexicancavefish |