Cargando…
Separation of Folinic Acid Diastereomers in Capillary Electrophoresis Using a New Cationic β-Cyclodextrin Derivative
A method for the separation of folinic acid diastereomers by capillary electrophoresis in chiral separation media was developed. Aiming to achieve a good separation of the anionic analytes, a newly synthesized cationic β-cyclodextrin derivative, mono-6-deoxy-6-piperdine-β-cyclodextrin, was applied a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364531/ https://www.ncbi.nlm.nih.gov/pubmed/25781478 http://dx.doi.org/10.1371/journal.pone.0120216 |
Sumario: | A method for the separation of folinic acid diastereomers by capillary electrophoresis in chiral separation media was developed. Aiming to achieve a good separation of the anionic analytes, a newly synthesized cationic β-cyclodextrin derivative, mono-6-deoxy-6-piperdine-β-cyclodextrin, was applied as the chiral selector. The effect of background electrolyte pH, the concentration of the cyclodextrin additive, and organic modifier on the separation was investigated. A good separation of folinic acid diastereomers was obtained with 30 mmol/L phosphate buffer at pH 6.50 containing 6.0 mmol/L of mono-6-deoxy-6-piperdine-β-cyclodextrin in 10% acetonitrile. Based on the capillary electrophoresis data, the binding constants of each diastereomer with mono-6-deoxy-6-piperdine-β-cyclodextrin were determined. Moreover, a computational modeling study, using the semi-empirical PM3 method, was used to discuss the possible mechanism of separation of folinic acid with mono-6-deoxy-6-piperdine-β-cyclodextrin. |
---|