Cargando…

Paclitaxel-induced neuropathy: potential association of MAPT and GSK3B genotypes

BACKGROUND: Paclitaxel treatment produces dose-limiting peripheral neurotoxicity, which adversely affects treatment and long-term outcomes. In the present study, the contribution of genetic polymorphisms to paclitaxel-induced neurotoxicity were assessed in 21 patients, focusing on polymorphisms invo...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Susanna B, Kwok, John B, Loy, Clement T, Friedlander, Michael L, Lin, Cindy S-Y, Krishnan, Arun V, Lewis, Craig R, Kiernan, Matthew C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364586/
https://www.ncbi.nlm.nih.gov/pubmed/25535399
http://dx.doi.org/10.1186/1471-2407-14-993
Descripción
Sumario:BACKGROUND: Paclitaxel treatment produces dose-limiting peripheral neurotoxicity, which adversely affects treatment and long-term outcomes. In the present study, the contribution of genetic polymorphisms to paclitaxel-induced neurotoxicity were assessed in 21 patients, focusing on polymorphisms involved in the tau-microtubule pathway, an important target of paclitaxel involved in neurotoxicity development. METHODS: Polymorphisms in the microtubule-associated protein tau (MAPT) gene (haplotype 1 and rs242557 polymorphism) and the glycogen synthase kinase-3β (GSK3β) gene (rs6438552 polymorphism) were investigated. Neurotoxicity was assessed using neuropathy grading scales, neurophysiological studies and patient questionnaires. RESULTS: A significant relationship between the GSK-3B rs6438552 polymorphism and paclitaxel-induced neurotoxicity was evident. CONCLUSIONS: Polymorphisms in tau-associated genes may contribute to the development of paclitaxel-induced neurotoxicity, although larger series will be necessary to confirm these findings.