Cargando…
Electroacupuncture alleviates retrieval of pain memory and its effect on phosphorylation of cAMP response element-binding protein in anterior cingulate cortex in rats
BACKGROUND: Recent evidence suggests that persistent pain and recurrent pain are due to the pain memory which is related to the phosphorylation of cAMP response element-binding protein (p-CREB) in anterior cingulate cortex (ACC). Eletroacupuncture (EA), as a complementary Chinese medical procedure,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364627/ https://www.ncbi.nlm.nih.gov/pubmed/25886521 http://dx.doi.org/10.1186/s12993-015-0055-y |
Sumario: | BACKGROUND: Recent evidence suggests that persistent pain and recurrent pain are due to the pain memory which is related to the phosphorylation of cAMP response element-binding protein (p-CREB) in anterior cingulate cortex (ACC). Eletroacupuncture (EA), as a complementary Chinese medical procedure, has a significant impact on the treatment of pain and is now considered as a mind-body therapy. METHODS: The rat model of pain memory was induced by two injections of carrageenan into the paws, which was administered separately by a 14-day interval, and treated with EA therapy. The paw withdrawal thresholds (PWTs) of animals were measured and p-CREB expressions in ACC were detected by using immunofluorescence (IF) and electrophoretic mobility shift assay (EMSA). Statistical comparisons among different groups were made by one-way, repeated-measures analysis of variance (ANOVA). RESULTS: The second injection of carrageenan caused the decrease of PWTs in the non-injected hind paw. EA stimulation applied prior to the second injection, increased the values of PWTs. In ACC, the numbers of p-CREB positive cells were significantly increased in pain memory model rats, which were significantly reduced by EA. EMSA results showed EA also down-regulated the combining capacity of p-CREB with its DNA. Furthermore, the co-expression of p-CREB with GFAP, OX-42, or NeuN in ACC was strengthened in the pain memory model rats. EA inhibited the co-expression of p-CREB with GFAP or OX-42, but not NeuN in ACC. CONCLUSIONS: The present results suggest the retrieval of pain memory could be alleviated by the pre-treatment of EA, which is at least partially attributed to the down-regulated expression and combining capacity of p-CREB and the decreased expression of p-CREB in astrocytes and microglia cells. |
---|