Cargando…

Preoperative Radiologic Classification of Convexity Meningioma to Predict the Survival and Aggressive Meningioma Behavior

BACKGROUND: A subgroup of meningioma demonstrates clinical aggressive behavior. We set out to determine if the radiological parameters can predict histopathological aggressive meningioma, and propose a classification to predict survival and aggressive meningioma behavior. METHODS: A retrospective re...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yi, Chotai, Silky, Chen, Ming, Jin, Shi, Qi, Song-tao, Pan, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364713/
https://www.ncbi.nlm.nih.gov/pubmed/25786236
http://dx.doi.org/10.1371/journal.pone.0118908
Descripción
Sumario:BACKGROUND: A subgroup of meningioma demonstrates clinical aggressive behavior. We set out to determine if the radiological parameters can predict histopathological aggressive meningioma, and propose a classification to predict survival and aggressive meningioma behavior. METHODS: A retrospective review of medical records was conducted for patients who underwent surgical resection of their convexity meningioma. WHO-2007 grading was used for histopathological diagnosis. Preoperative radiologic parameters were analyzed, each parameter was scored 0 or 1. Signal intensity on diffusion weighted MRI (DWI) (hyperintensity=1), heterogeneity on T1-weighted gadolinium enhanced MRI (heterogeneity=1), disruption of arachnoid at brain-tumor interface=1and peritumoral edema (PTE) on T2-weighted MRI (presence of PTE=1) and tumor shape (irregular shape=1). Multivariate logistic regression analyses were conducted to determine association of radiological parameters to histopathological grading. Kaplan-Meier and Cox regression models were used to determine the association of scoring system to overall survival and progression free survival (PFS). Reliability of the classification was tested using Kappa co-efficient analysis. RESULTS: Hyperintensity on DWI, disruption of arachnoid at brain-tumor interface, PTE, heterogenicitiy on T1-weighted enhanced MRI and irregular tumor shape were independent predictors of non-grade I meningioma. Mean follow-up period was 94.6 months (range, 12-117 months). Median survival and PFS in groups-I, II and III was 114.1±1.2 and 115.7± 0.8, 88± 3.3 and 58.5±3.9, 43.2± 5.1 and 18.2±1.7 months respectively. In cox regression analysis model, age (P<0.0001, OR–1.039, CI-1.017-0.062), WHO non-grade-I meningioma (P=0.017, OR–3.014, CI-1.217-7.465), radiological classification groups II (P=0.002, OR–6.194, CI–1.956-19.610) and III (P<0.0001, OR–21.658, CI–5.701-82.273) were independent predictors of unfavorable survival outcomes. CONCLUSIONS: Preoperative radiological classification can be used as a supplement to the histopathological grading. Group-I meningiomas demonstrate benign radiological, histopathological and clinical features; group-III demonstrates aggressive features. Group-II meningiomas demonstrate intermediate features; the need for more aggressive follow-up and/or treatment should be further investigated.