Cargando…

Identification of metE as a Second Target of the sRNA scr5239 in Streptomyces coelicolor

While transcriptional regulation of the primary and secondary metabolism of the model organism Streptomyces coelicolor is well studied, little is still known about the role small noncoding RNAs (sRNAs) play in regulating gene expression in this organism. Here, we report the identification of a secon...

Descripción completa

Detalles Bibliográficos
Autores principales: Vockenhuber, Michael-Paul, Heueis, Nona, Suess, Beatrix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365011/
https://www.ncbi.nlm.nih.gov/pubmed/25785836
http://dx.doi.org/10.1371/journal.pone.0120147
Descripción
Sumario:While transcriptional regulation of the primary and secondary metabolism of the model organism Streptomyces coelicolor is well studied, little is still known about the role small noncoding RNAs (sRNAs) play in regulating gene expression in this organism. Here, we report the identification of a second target of the sRNA scr5239, an sRNA highly conserved in streptomycetes. The 159 nt long sRNA binds its target, the mRNA of the cobalamin independent methionine synthase metE (SCO0985), at the 5’ end of its open reading frame thereby repressing translation. We show that a high methionine level induces expression of scr5239 itself. This leads, in a negative feedback loop, to the repression of methionine biosynthesis. In contrast to the first reported target of this sRNA, the agarase dagA, this interaction seems to be conserved in a wide number of streptomycetes.