Cargando…
A Multilevel Model to Estimate the Within- and the Between-Center Components of the Exposure/Disease Association in the EPIC Study
In a multicenter study, the overall relationship between exposure and the risk of cancer can be broken down into a within-center component, which reflects the individual level association, and a between-center relationship, which captures the association at the aggregate level. A piecewise exponenti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365026/ https://www.ncbi.nlm.nih.gov/pubmed/25785729 http://dx.doi.org/10.1371/journal.pone.0117815 |
Sumario: | In a multicenter study, the overall relationship between exposure and the risk of cancer can be broken down into a within-center component, which reflects the individual level association, and a between-center relationship, which captures the association at the aggregate level. A piecewise exponential proportional hazards model with random effects was used to evaluate the association between dietary fiber intake and colorectal cancer (CRC) risk in the EPIC study. During an average follow-up of 11.0 years, 4,517 CRC events occurred among study participants recruited in 28 centers from ten European countries. Models were adjusted by relevant confounding factors. Heterogeneity among centers was modelled with random effects. Linear regression calibration was used to account for errors in dietary questionnaire (DQ) measurements. Risk ratio estimates for a 10 g/day increment in dietary fiber were equal to 0.90 (95%CI: 0.85, 0.96) and 0.85 (0.64, 1.14), at the individual and aggregate levels, respectively, while calibrated estimates were 0.85 (0.76, 0.94), and 0.87 (0.65, 1.15), respectively. In multicenter studies, over a straightforward ecological analysis, random effects models allow information at the individual and ecologic levels to be captured, while controlling for confounding at both levels of evidence. |
---|