Cargando…
Metabolomic Analysis of Clinical Plasma from Cerebral Infarction Patients Presenting with Blood Stasis
Blood stasis (BS) is characterized as a disorder of blood circulation. In traditional Korean medicine (TKM), it is viewed as a cause factor of diseases such as multiple sclerosis and stroke. This study investigated differences in the plasma metabolites profiles of subjects displaying BS or non-BS pa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365334/ https://www.ncbi.nlm.nih.gov/pubmed/25834622 http://dx.doi.org/10.1155/2015/453423 |
Sumario: | Blood stasis (BS) is characterized as a disorder of blood circulation. In traditional Korean medicine (TKM), it is viewed as a cause factor of diseases such as multiple sclerosis and stroke. This study investigated differences in the plasma metabolites profiles of subjects displaying BS or non-BS patterns. Thirty-one patients with cerebral infarction diagnosed with BS and an equal number of sex- and age-matched non-BS patients were enrolled. Metabolic profiling was performed using UPLC-MS. The ratio of subjects with a rough pulse and purple coloration of the tongue was higher in patients presenting with BS pattern. Through metabolomics analysis, 82 metabolites that differed significantly between the BS and non-BS pattern were identified, and the two groups were significantly separated using an orthogonal partial least square-discriminant analysis model (P < 0.001). Of these 82 metabolites, acetyl carnitine, leucine, kynurenine, phosphocholine, hexanoyl carnitine, and decanoyl carnitine were present in significantly higher levels in patients with a BS pattern than those with a non-BS pattern. Our results also demonstrated that seven plasma metabolites, including acyl-carnitines and kynurenine, were associated with a BS pattern, suggesting that variant plasma metabolic profiles may serve as a biomarker for diagnosis of BS in patients with cerebral infarction. |
---|