Cargando…
MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates
BACKGROUND & OBJECTIVES: Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365351/ https://www.ncbi.nlm.nih.gov/pubmed/25758576 |
Sumario: | BACKGROUND & OBJECTIVES: Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique for identification of clinical bacterial isolates by protein profiling using matrix-assisted laser desorption-ionization time - of - flight mass spectrometry (MALDI-TOF MS). METHODS: Freshly grown bacterial isolates were selected from culture plates. Ethanol/formic acid extraction procedure was carried out, followed by charging of MALDI target plate with the extract and overlaying with α-cyano-4 hydroxy-cinnamic acid matrix solution. Identification was performed using the MALDI BioTyper 1.1, software for microbial identification (Bruker Daltonik GmbH, Bremen, Germany). RESULTS: A comparative analysis of 82 clinical bacterial isolates using MALDI -TOF MS and conventional techniques was carried out. Amongst the clinical isolates, the accuracy at the species level for clinical isolates was 98.78%. One out of 82 isolates was not in accordance with the conventional assays because MALDI-TOF MS established it as Streptococcus pneumoniae and conventional methods as Streptococcus viridans. INTERPRETATION & CONCLUSIONS: MALDI - TOF MS was found to be an accurate, rapid, cost-effective and robust system for identification of clinical bacterial isolates. This innovative approach holds promise for earlier therapeutic intervention leading to better patient care. |
---|