Cargando…
A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials
BACKGROUND DATA: Cervical arthroplasty offers theoretical advantages over traditional spinal fusion, including elimination of adjacent segment disease and elimination of the risk of pseudoarthrosis formation. Initial studies of cervical arthroplasty have shown promising results, however, the ideal d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Society for the Advancement of Spine Surgery
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365622/ https://www.ncbi.nlm.nih.gov/pubmed/25802668 http://dx.doi.org/10.1016/j.esas.2011.01.002 |
_version_ | 1782362253737066496 |
---|---|
author | Dahl, Michael C. Jacobsen, Stephen Metcalf, Newton Sasso, Rick Ching, Randal P. |
author_facet | Dahl, Michael C. Jacobsen, Stephen Metcalf, Newton Sasso, Rick Ching, Randal P. |
author_sort | Dahl, Michael C. |
collection | PubMed |
description | BACKGROUND DATA: Cervical arthroplasty offers theoretical advantages over traditional spinal fusion, including elimination of adjacent segment disease and elimination of the risk of pseudoarthrosis formation. Initial studies of cervical arthroplasty have shown promising results, however, the ideal design characteristics for disc replacement constructs have not been determined. The current study seeks to quantify the differences in the shock absorption characteristics of three commonly used materials in cervical disc arthroplasty. METHODS: Three different nucleus materials, polyurethane (PU), polyethylene (PE) and a titanium-alloy (Ti) were tested in a humidity- and temperature-controlled chamber. Ten of each nucleus type underwent three separate mechanical testing protocols to measure 1) dynamic stiffness, 2) quasi-static stiffness, 3) energy absorption, and 4) energy dissipation. The results were compared using analysis of variance. RESULTS: PU had the lowest mean dynamic stiffness (435 ± 13 N/mm, P < .0001) and highest energy absorption (19.4 ± 0.1 N/mm, P < .0001) of all three nucleus materials tested. PU was found to have significantly higher energy dissipation (viscous damping ratio 0.017 ± 0,001, P < .0001) than the PE or TI nuclei. PU had the lowest quasi-static stiffness (598 ± 23 N/mm, P < .0001) of the nucleus materials tested. A biphasic response curve was observed for all of the PU nuclei tests. CONCLUSIONS: Polyurethane absorbs and dissipates more energy and is less stiff than either polyethylene or titanium. LEVEL OF EVIDENCE: Basic Science/Biomechanical Study. CLINICAL RELEVANCE: This study characterizes important differences in biomechanical properties of materials that are currently being used for different cervical disc prostheses. |
format | Online Article Text |
id | pubmed-4365622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | International Society for the Advancement of Spine Surgery |
record_format | MEDLINE/PubMed |
spelling | pubmed-43656222015-03-23 A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials Dahl, Michael C. Jacobsen, Stephen Metcalf, Newton Sasso, Rick Ching, Randal P. SAS J Biomechanics BACKGROUND DATA: Cervical arthroplasty offers theoretical advantages over traditional spinal fusion, including elimination of adjacent segment disease and elimination of the risk of pseudoarthrosis formation. Initial studies of cervical arthroplasty have shown promising results, however, the ideal design characteristics for disc replacement constructs have not been determined. The current study seeks to quantify the differences in the shock absorption characteristics of three commonly used materials in cervical disc arthroplasty. METHODS: Three different nucleus materials, polyurethane (PU), polyethylene (PE) and a titanium-alloy (Ti) were tested in a humidity- and temperature-controlled chamber. Ten of each nucleus type underwent three separate mechanical testing protocols to measure 1) dynamic stiffness, 2) quasi-static stiffness, 3) energy absorption, and 4) energy dissipation. The results were compared using analysis of variance. RESULTS: PU had the lowest mean dynamic stiffness (435 ± 13 N/mm, P < .0001) and highest energy absorption (19.4 ± 0.1 N/mm, P < .0001) of all three nucleus materials tested. PU was found to have significantly higher energy dissipation (viscous damping ratio 0.017 ± 0,001, P < .0001) than the PE or TI nuclei. PU had the lowest quasi-static stiffness (598 ± 23 N/mm, P < .0001) of the nucleus materials tested. A biphasic response curve was observed for all of the PU nuclei tests. CONCLUSIONS: Polyurethane absorbs and dissipates more energy and is less stiff than either polyethylene or titanium. LEVEL OF EVIDENCE: Basic Science/Biomechanical Study. CLINICAL RELEVANCE: This study characterizes important differences in biomechanical properties of materials that are currently being used for different cervical disc prostheses. International Society for the Advancement of Spine Surgery 2011-06-01 /pmc/articles/PMC4365622/ /pubmed/25802668 http://dx.doi.org/10.1016/j.esas.2011.01.002 Text en © 2011 SAS - The International Society for the Advancement of Spine Surgery. Published by Elsevier Inc. All rights reserved. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Biomechanics Dahl, Michael C. Jacobsen, Stephen Metcalf, Newton Sasso, Rick Ching, Randal P. A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
title | A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
title_full | A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
title_fullStr | A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
title_full_unstemmed | A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
title_short | A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
title_sort | comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials |
topic | Biomechanics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365622/ https://www.ncbi.nlm.nih.gov/pubmed/25802668 http://dx.doi.org/10.1016/j.esas.2011.01.002 |
work_keys_str_mv | AT dahlmichaelc acomparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT jacobsenstephen acomparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT metcalfnewton acomparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT sassorick acomparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT chingrandalp acomparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT dahlmichaelc comparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT jacobsenstephen comparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT metcalfnewton comparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT sassorick comparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials AT chingrandalp comparisonoftheshockabsorbingpropertiesofcervicaldiscprosthesisbearingmaterials |