Cargando…
DGEclust: differential expression analysis of clustered count data
We present a statistical methodology, DGEclust, for differential expression analysis of digital expression data. Our method treats differential expression as a form of clustering, thus unifying these two concepts. Furthermore, it simultaneously addresses the problem of how many clusters are supporte...
Autores principales: | Vavoulis, Dimitrios V, Francescatto, Margherita, Heutink, Peter, Gough, Julian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365804/ https://www.ncbi.nlm.nih.gov/pubmed/25853652 http://dx.doi.org/10.1186/s13059-015-0604-6 |
Ejemplares similares
-
Differential expression analysis for sequence count data
por: Anders, Simon, et al.
Publicado: (2010) -
GoM DE: interpreting structure in sequence count data with differential expression analysis allowing for grades of membership
por: Carbonetto, Peter, et al.
Publicado: (2023) -
UMI-count modeling and differential expression analysis for single-cell RNA sequencing
por: Chen, Wenan, et al.
Publicado: (2018) -
Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
por: Ntranos, Vasilis, et al.
Publicado: (2016) -
Consensus clustering and functional interpretation of gene-expression data
por: Swift, Stephen, et al.
Publicado: (2004)