Cargando…
Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L.
The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the lo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366152/ https://www.ncbi.nlm.nih.gov/pubmed/25790019 http://dx.doi.org/10.1371/journal.pone.0119425 |
_version_ | 1782362324094418944 |
---|---|
author | Li, Lun Long, Yan Zhang, Libin Dalton-Morgan, Jessica Batley, Jacqueline Yu, Longjiang Meng, Jinling Li, Maoteng |
author_facet | Li, Lun Long, Yan Zhang, Libin Dalton-Morgan, Jessica Batley, Jacqueline Yu, Longjiang Meng, Jinling Li, Maoteng |
author_sort | Li, Lun |
collection | PubMed |
description | The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci. |
format | Online Article Text |
id | pubmed-4366152 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43661522015-03-23 Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. Li, Lun Long, Yan Zhang, Libin Dalton-Morgan, Jessica Batley, Jacqueline Yu, Longjiang Meng, Jinling Li, Maoteng PLoS One Research Article The prediction of the flowering time (FT) trait in Brassica napus based on genome-wide markers and the detection of underlying genetic factors is important not only for oilseed producers around the world but also for the other crop industry in the rotation system in China. In previous studies the low density and mixture of biomarkers used obstructed genomic selection in B. napus and comprehensive mapping of FT related loci. In this study, a high-density genome-wide SNP set was genotyped from a double-haploid population of B. napus. We first performed genomic prediction of FT traits in B. napus using SNPs across the genome under ten environments of three geographic regions via eight existing genomic predictive models. The results showed that all the models achieved comparably high accuracies, verifying the feasibility of genomic prediction in B. napus. Next, we performed a large-scale mapping of FT related loci among three regions, and found 437 associated SNPs, some of which represented known FT genes, such as AP1 and PHYE. The genes tagged by the associated SNPs were enriched in biological processes involved in the formation of flowers. Epistasis analysis showed that significant interactions were found between detected loci, even among some known FT related genes. All the results showed that our large scale and high-density genotype data are of great practical and scientific values for B. napus. To our best knowledge, this is the first evaluation of genomic selection models in B. napus based on a high-density SNP dataset and large-scale mapping of FT loci. Public Library of Science 2015-03-19 /pmc/articles/PMC4366152/ /pubmed/25790019 http://dx.doi.org/10.1371/journal.pone.0119425 Text en © 2015 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Lun Long, Yan Zhang, Libin Dalton-Morgan, Jessica Batley, Jacqueline Yu, Longjiang Meng, Jinling Li, Maoteng Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. |
title | Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. |
title_full | Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. |
title_fullStr | Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. |
title_full_unstemmed | Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. |
title_short | Genome Wide Analysis of Flowering Time Trait in Multiple Environments via High-Throughput Genotyping Technique in Brassica napus L. |
title_sort | genome wide analysis of flowering time trait in multiple environments via high-throughput genotyping technique in brassica napus l. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366152/ https://www.ncbi.nlm.nih.gov/pubmed/25790019 http://dx.doi.org/10.1371/journal.pone.0119425 |
work_keys_str_mv | AT lilun genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT longyan genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT zhanglibin genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT daltonmorganjessica genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT batleyjacqueline genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT yulongjiang genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT mengjinling genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl AT limaoteng genomewideanalysisoffloweringtimetraitinmultipleenvironmentsviahighthroughputgenotypingtechniqueinbrassicanapusl |